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Symmetries and metamorphoses1

Giuseppe Vitiello2

Quantum field dynamics may manifest itself in a variety of observable ordered patterns. 
The manifestations of the dynamical symmetry may be described in formal terms as meta-
morphoses. A crucial role in the metamorphosis processes is played by the coherence of 
the correlations generating order and self-similar fractal patterns. The local nature of the 
observations is at the origin of the dynamical rearrangement of symmetry generating the 
metamorphosis processes. The properties of dissipation, functional stability, the arising of 
the arrow of time are also discussed. Contrarily to what happens in a disordered system, the 
energy delivered to ordered patterns is distributed not only individually among the elemen-
tary constituents, but also to their coherent ordering correlations. Our conclusions apply 
to elementary particle physics, condensed matter physics, and to the physics of the living 
phase of the matter (biology and neuroscience). They can be as well applied to some as-
pects of linguistics in the generation of meanings in the transition from syntax to semantics.

1. Metamorphoses
The “question of metamorphosis” has always 
been object of attention in the study of natural 
phenomena, especially in phytology, zoology, 
and living systems in general. Notable exam-
ples are the studies by Linnaeus and Goethe 
scientist on the “process of plant growth” and 
transformation of the identical in which nature 
“unfolds the same dynamics.” It is therefore in-
teresting to see how in physics it is possible to 
speak of metamorphosis, morphology, trans-
formation, and of the unfolding of the same 
dynamics in concrete formal terms that find 
confirmation in countless experimental find-
ings.3

Some aspects of the formalism discussed be-
low, typical of the physics of condensed matter 
and elementary particles, can also be usefully 
extended to the domain of living matter, from 
biology to neuroscience. In particular, the co-
herence of the microscopic dynamics, that is 
responsible of the generation of ordered struc-
tures, allows its manifestation at the macro-
scopic level and thus enables the extension of 
the of metamorphosis to all of nature.

2. Fields and their equations
Let me introduce some of the actors that ap-
pear in our story: the fields, their equations, 
their transformations.

Fields are well-defined mathematical quanti-
ties involving an infinite number of degrees of 
freedom and can be transformed according to 
certain precise prescriptions. If we observe for 
example the current of a fluid, it is unthinkable 
that we can measure the speed of each sin-
gle molecule. We then introduce the velocity 
field, say v(x, t), where x indicates the posi-
tion and t the time. The velocity field therefore 
assumes well-defined values   in every point 
of space and time crossed by the flow of our 
fluid. The variations of the velocity field as x 
varies are related to its variations in time and 
to the forces by which these variations are gen-
erated. The speed of the molecules of the fluid 
can in fact be varied with appropriate actions 
(forces), caused by external or internal agents, 
for example by variations in temperature in 
certain regions of the fluid. The relationships 
between these variations or transformations of 
the field and the forces define the equations 
of the velocity field and these describe the dy-
namics of our fluid current, the evolution of its 
state as space and time vary. The field therefore 
describes the collective motion of the fluid 
while being sensible point by point, locally, to 
the variations in the motion of the individual 
molecules.

In the following, instead of referring to the 
example of the fluid current and the velocity 

field, a generic system and a generic field ϕ 
(x, t) will be considered.
We are interested in continuous transforma-
tions, i.e. those that depend on quantities, 
called parameters of the transformation, which 
vary continuously in a certain interval. For ex-
ample, in the translations and rotations, the 
quantities of which the field is translated or the 
angle of which it is rotated vary continuously 
in a given interval.
The set of transformations of a certain type to 
which a field ϕ (x, t) can undergo, may en-
joy well-defined mathematical properties and 
in this case it is said that it forms a group of 
transformations.

3. Symmetries and dynamics
It may happen that the equations of the fields 
do not change their mathematical form when 
the fields are transformed according to a group 
G of transformations. The equations, and 
therefore the dynamics they describe, are then 
said to be symmetrical under the group G of 
transformations.
Knowing the symmetries of dynamics is of 
great help in finding the solutions of the field 
equations. These describe the set of interac-
tions between the elementary components 
and between these and the forces that oper-
ate. They are equations in which products and 
powers of the fields appear. For this reason 
they are called non-linear equations and find-
ing their solutions can be very difficult.
The knowledge of symmetry properties offers 
the great advantage of being able to identify 
those solutions for which conservation laws 
apply, for example the conservation of energy 
and other quantities that characterize the states 
of the system. In fact, Noether’s theorem4 en-
sures that the existence of a continuous sym-
metry of the equations implies the existence 
of a corresponding quantity that does not vary 
with time (conserved in time).

4. The boundary conditions
There is another actor who has entered our 
story: the state of the system.
The systems we are interested in are general-
ly composed by an enormous number of ele-
mentary components and the tools useful for 

their study are provided by quantum field the-
ory (QFT). A central problem is the derivation 
of macroscopic properties and behaviors start-
ing from the microscopic dynamics of quan-
tum fields.
In QFT, the fields actually indicate mathe-
matical operations (they are called indeed 
field “operators”) which are well defined only 
on specific sets of functions, or spaces of the 
states of the system, called in the jargon of QFT 
phases or representations of the canonical field 
algebra.
A characteristic aspect of QFT is the existence 
of a set {HF} of an infinite number of possible 
different representations. They describe physi-
cally different realizations of the dynamics and 
are characterized by different values   of quanti-
ties, the order parameters, relating to the sym-
metries of the dynamics. A specific space in 
the set of spaces {HF} depends on the specif-
ic properties of the environment in which the 
system evolves and with which it is inextrica-
bly linked (entangled, in the QFT jargon).
The same dynamics, i.e. the same set of field 
equations, governs the evolution of the states 
of the system in each of the different phases it 
can access.
Therefore, the assignment of the equations is 
not enough for the complete definition of the 
mathematical problem of the resolution of the 
field equations. It is necessary to specify also 
in which representation or phase one wants to 
solve them. The equalities between the mem-
bers of the equations of the fields thus take on 
a defined mathematical meaning only when 
we operate with the fields on the states of the 
specified representation. This is expressed by 
saying that they are “weak equalities.”
The transitions from one phase to another 
(phase transitions) are described by critical 
processes, that is, characterized by the un-
limited growth (divergence) of certain specific 
quantities of the system.
A first conclusion we reach is therefore that 
the same dynamics unfolds in a multiplicity of 
different physical phases or behaviors of the 
system.
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5. Interacting fields and asymptotic fields
The fields whose equations describe the inter-
actions are called interacting or Heisenberg 
fields. Those in terms of which the observa-
tions are described are called asymptotic or 
physical fields. Let’s denote the Heisenberg 
fields with ψ (x, t) and the asymptotic fields 
with φ (x, t). HH and HF denote the spaces of 
the states on which ψ (x, t) and φ (x, t) are 
respectively defined.
In general, observations are not possible in 
the spatial and temporal region in which the 
interaction takes place. Observations can in 
fact produce interference with the process to 
be studied. To avoid these interferences it is 
necessary to proceed with the observations in 
space-time regions far from the interaction re-
gion, in “asymptotic” regions. Only in these 
regions can we carry out the measurement op-
erations of the observable quantities in terms 
of the fields φ (x, t).

We therefore have no direct access to the in-
teractions described by the dynamics. They re-
main opaque5 to observations.
QFT therefore develops on two levels of lan-
guage, that of the dynamics of the fields ψ(x, 
t) and the phenomenological one of the fields 
φ(x, t) (Figure 1). The connection between the 
two levels is given by the “dynamic map” Ψ 
which expresses ψ (x, t) in terms of φ(x, t): 
<ψ (x, t)> = <Ψ(φ(x, t))>; the symbol < > de-
notes that the value of ψ(x, t) on the asymptot-
ic states is obtained by operating with Ψ(φ(x, 
t)) on them. Equality holds “in a weak sense” 
in the HF space (see Section 4).
The functional form of Ψ in terms of φ(x, t) 
contains all the information contained in the 
equations of the dynamics; the map Ψ: ψ(x, t) 
↔ φ(x, t) is therefore called dynamical map. 

6. Spontaneous breakdown of symmetry 
and generation of ordered structures
In addition to the symmetry properties of the 
Heisenberg field equations under the transfor-
mation group G, it is also necessary to con-
sider the symmetry properties of the physical 
state spaces in the set {HF} in which the dy-
namics can be realized. It may happen that 
one or some of these spaces do not have the 
same symmetry properties of the dynamical 
Heisenberg equations.
Consider a specific HF and its state of minimum 
energy, called the vacuum state. Suppose this 
state is symmetric under a group of transfor-
mations C that is different from G (Figure 1). 
When this happens, spontaneous breakdown 
of symmetry (SBS) occurs (we are not interest-
ed here in the explicit symmetry breaking ob-
tained by modifying the equations of the fields 
with additional terms).
When SBS occurs, the equations for the as-
ymptotic fields φ(x, t) defined on HF are sym-
metric under C and there exists an observable 
quantity, let’s denote it with M, distinctive of 
the vacuum state and of the considered HF 
space, called order parameter. The reason for 
this name for M lies in the fact that SBS gen-
erates dynamic correlations between elemen-
tary components over large distances relative 
to their size. Such correlations are responsible 
for the formation of ordered structures in the 
states of the system. The order parameter pro-
vides a measure of the degree of ordering in 
the observable states.
Order therefore arises from the breaking of 
symmetry, it is lack of symmetry. A system that 
is symmetrical under certain transformations 
is in fact, by definition of symmetry, a system 
that remains unchanged even after it has un-
dergone the transformations. The presence of 
symmetries produces a condition of indistin-
guishability between the system states before 
and after the transformation has been induced. 
The breaking of symmetry introduces the pos-
sibility of distinguishing between aspects or 
elements of the system that are otherwise in-
distinguishable.
For example, in a gas of atoms, each of them 
can be placed in any position; the dynam-
ics is symmetrical under continuous spatial 

translation (original symmetry group G). Now 
suppose that the boundary conditions (for 
example variations in temperature, pressure, 
etc.) induce the gas to transform into a crystal 
(transition from the gaseous to the crystalline 
phase). In the crystal, the atoms are arranged 
in the sites of the crystal lattice and cannot be 
translated at will, as was the case in gas. The 
crystalline order thus arises from the breaking 
of continuous symmetry under space transla-
tion. The transformation into a crystal is a pro-
cess called dynamical rearrangement of sym-
metry.6

Responsible for the ordering of the atoms 
are the correlations between them, collective 
modes or waves extending over the entire 
crystal: the elastic waves, whose associated 
quanta are the phonons.
The order parameter is given by the density of 
the crystal, linked to the number of phonons 
condensed in the ground state. This number 
can be varied with a condensation transforma-
tion.
In conclusion, the crystalline form is generated 
from the gas of atoms in a process of dynam-
ic transformation. SBS thus complement the 
study of the system components (the atomist 
standpoint) with their collective dynamical in-
teractions (the dynamical standpoint). Natural-
ism, limited to the atomist vision, is necessary 
but not sufficient. Inclusion of the dynamical 
vision leads to scientific knowledge.
Another example, among many, is the magnet. 
At the level of the basic dynamics, the elemen-
tary magnets (e.g. the electrons or the atoms 
with a magnetic moment) can each be orient-
ed in any direction. The group G is that of con-
tinuous spherical rotations. Following the SBS, 
G is transformed (rearranged) into the group C 
that contains the cylindrical rotations around 
the specific direction of the magnetization (or-
der parameter) and the condensation of mag-
nons, quanta of the correlation waves (spin 
waves) between the elementary magnets. The 
order parameter thus characterizes the macro-
scopic form of the system, namely its macro-
scopic behavior as a magnetized system.
In these two examples, variations of the bound-
ary conditions, e.g. of the temperature, induce 
variations of the order parameter (density and 

Fig. 1. The two levels of quantum field theory. When the space of physical states HF is 
not symmetrical under the symmetry group G of the dynamics, but under the group C 
different from G, there is spontaneous breakdown of symmetry and the dynamical  re-
arrangement G → C occurs.
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neuroscience,7 and functional specializa-
tion in general. However, it should be em-
phasized that on the trajectory from space to 
space (metamorphoses), the minimization of 
free energy is ensured in each of the spaces 
through which it proceeds. This ensures that 
although the system evolves through a contin-
uum of phase transitions, it is stable in each 
HF (the system is “locally” stable). A property 
that guarantees the functional stability of the 
system.
Minimization of free energy implies the en-
ergy balance linked to the formation of or-
dered structures and therefore to the entropy 
and irreversible time evolution of the system. 
The dissipative character of the dynamics ulti-
mately implies that the system cannot evolve 
going backward in time, i.e. breaking of time 
reversal symmetry, the appearance of the ar-
row of time: metamorphoses are not reversible 
(perhaps it is not a case that in fairy tales and 
myths undoing a metamorphosis, i. e. break-
ing a spell, requires a miraculous action… 
only the kiss of the princess can reverse the 
arrow of time by returning the frog to what it 
was before, a beautiful prince).
The energy transferred to an ordered system 
is distributed not only among the elementary 
components, but also to the “network of cor-
relations” that binds them in the ordering. In 
a disordered system, for example in a gas, the 
acquired energy is distributed among the el-
ementary components producing, apart from 
their transition to excited states when such a 
possibility exists, an increase in kinetic ener-
gy (thermalization with heat production and 
diffusion as predicted by the kinetic theory 
of gases). In ordered systems, the presence 
of the correlation waves, represented by their 
associated quanta, imposes the distribution of 
energy also to the correlation network itself. 
This entails a reduced thermalization and the 
possibility of collecting energy in the system, 
“keeping it on the correlation network” for the 
purpose of subsequent use (in chemical reac-
tions or other) inside the system or in its inter-
actions with the environment.
To better understand how energy, dissipation 
and (local) stability are linked to the formation 
of ordered structures, it should be remembered 

magnetization, respectively), namely transfor-
mations in the crystalline and magnetic struc-
tures, respectively.
The system thus goes, through these transfor-
mations, from form to form. The basic dynam-
ics in each of the cases manifests itself at the 
level of observations in a multiplicity of dif-
ferent orders, different forms: meta-morpho-
sis from the opacity of the original uniformity 
(symmetry) to the richness of diversity.

7. Dissipation, coherence and the arrow 
of time
In solving the Heisenberg field equations the 
assignment of a specific state space HF cor-
responds to considering the properties of the 
environment. The dissipative character of the 
dynamics of the system is thus considered. 
The {system-environment} complex consti-
tutes a single closed system and the flows of 
the exchanges between them are balanced. 
This closing operation is necessary since the 
available mathematical formalism (called ca-
nonical) is modeled for closed systems.
The metamorphosis process originates pre-
cisely in the realization of the dynamics in 
HF. Therefore the dissipative character of the 
dynamics plays an essential role in the gener-
ation of forms (morphogenesis) to which the 
rearrangement of the symmetry leads.
Since variations in the boundary conditions 
are also induced by interactions with the en-
vironment, and since these variations induce 
phase transitions (metamorphoses), from HF to 
HF’, HF’’ and so on, we see that the “history” of 
the system evolves through trajectories in {HF} 
in a succession of phase transitions in its inter-
action with the environment.
The reorganization (rearrangement) of symme-
try is a dynamic process. The transformation 
from form to form in the succession of meta-
morphoses does not consist in the negation of 
the basic symmetry of the field equations, but 
in its disclosure through the richness of possi-
ble, different modalities of existence.
For the sake of brevity, I do not dwell further 
on phase transitions, although they play a 
fundamental role; for example, a continuous 
succession of phase transitions characterizes 
the evolution over time in biological systems, 

that the phenomenon of condensation, in-
duced by SBS, is described by the transforma-
tion of the correlation quanta B (x, t)→ B(x, t) 
+ c(x, t), with c dependent or not on x and t 
(non-homogeneous or homogeneous conden-
sation, respectively).
The condensation transformation of B (x, t) 
produces states characterized by the fact that 
the correlations they represent do not interfere 
destructively because they are “in phase” with 
each other, they are coherent states.
The coherence property allows the possibility 
of the transition from the microscopic (quan-
tum) world to the macroscopic (classical) be-
haviors of the system. This is possible since 
in coherent states the quantum fluctuations 
<ΔN> of the number <N> of the condensed 
quanta are negligible in percentage; in fact, 
<ΔN>/<N> ≈1/|α|, where |α| denotes the de-
gree of coherence of the state, so that great-
er |α| (coherence) implies lower percent of 
quantum fluctuations and the system therefore 
shows classical behaviors. The order parame-
ter is in fact a classical field in the sense that 
its value does not depend on quantum fluctu-
ations, and this precisely indicates the stability 
(with respect to quantum fluctuations) of the 
ordering it accounts for. It is in this sense that 
we refer to systems that present ordering as 
macroscopic quantum systems.
In conclusion, the set { HF} of the state spaces 
of the system is a set of coherent states and 
it can be shown that the trajectories through 
which the system evolves, from phase to 
phase, are classic chaotic trajectories, i.e. such 
that small variations in the initial conditions 
imply divergent trajectories, never wrapping 
around themselves. The system is therefore 
able to discriminate between small variations 
of the initial conditions, resulting in different 
behaviors. The properties of chaos give the sys-
tem great functional efficiency.
The phenomenon of coherence is thus at the 
basis of the metamorphoses through which the 
underlying dynamics manifests itself. Particu-
larly notable is the case of fractals or self-simi-
lar structures discussed in the next section.

8. Fractals and coherence
Consider the Koch curve (Figure 2) as an ex-
ample of fractal curve. Divide the segment u0 
into 3 parts (λ = 1/3). With 4 of these segments, 
each equal to u0/3, construct the segment u1 = 
(4/3) u0. Put p = 4. Impose u1/u0 = 1, which 
amounts to asking that the path u0 and u1 be 
equivalent paths (there are interesting process-
es in physics that do not depend on the path 
followed in passing from point A to point B). 
Therefore, in order to satisfy u1/u0 = 1, there 
must be a number d such that 4/3d = λdp = 1. 
Repeating the process n times, for every inte-
ger n, with n→∞ , we have (4/3d)n =  (λdp)n = 1. 
Thus, d = log 4/log 3 = 1.2619.

Fig. 2. The first 5 stages of the Koch curve.

This number d defines the fractal dimension, 
or self-similarity dimension, of the Koch curve.
When λ and p are extended to complex val-
ues, the quantities (λd p)n, for each integer n, 
apart a normalization factor, constitute the 
functions by which coherent states are con-
structed in quantum theories. One can prove 
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then that fractals and deformed coherent states 
are mathematically isomorphic.8 Fractals can 
thus be thought as macroscopic quantum sys-
tems resulting from the deformation of the co-
herent microscopic dynamics. As the values   
assumed by the deformation parameter q = λd 
vary, the dynamics of the elementary compo-
nents of the system manifest itself in different 
fractal forms. Coherence, that is, the harmoni-
ous fabric of long range correlations between 
elementary components, generates the mul-
tiplicity of self-similar structures that we ob-
serve in nature.

9. Origin of the metamorphoses
It is possible to demonstrate9 that the process 
of selection of the symmetry breaking state 
can be induced by a weak stimulus (trigger), 
a minimal but in-phase input, i.e. capable of 
resonating with the system. Such a process of 
symmetry breaking via a minimum input turns 
out to be linked to the localization of phys-
ical states within finite spatial and temporal 
boundaries. Their local nature is ultimately at 
the origin of the dynamical rearrangement of 
symmetry, i.e. of metamorphoses.
As matter of fact, our observations are always 
local. The local nature is an intrinsic aspect 
to them, which we cannot avoid, and which 
reflects on the observed physical states. The 
spatial-temporal limitations induced by the lo-
calization are however essential because oth-
erwise, we could not distinguish “what from 
what.” For example, the possibility of talking 
about an apple arises from the fact that in our 
observations we can localize it, that is, its de-
fined spatial contours avoid its “overlapping” 
to an orange… In short, our observations al-
ways depend on a “threshold” volume V. Con-
tributions from what happens outside V are of 
the order of 1/V, that is, they are negligible for 
large V (1/V → 0 as V increases). The dynami-
cal rearrangement of symmetry finds its origin 
in the missing of these contributions of the or-
der of 1/V in our observations. If, on the oth-
er hand, we recover the contributions 1/V by 
resuming them and take them into account in 
our analysis, we can (mathematically) trace 
the rearrangement path and “recognize” 

(within certain limits) the invariance group G 
of the equations of the interaction fields.10

10. Conclusions
Fabrizio Desideri11 recalls that in Plato’s Cra-
tilo “beauty is (…) understood as the eponym 
of dianoia. Therefore, it does not express the 
stability of a thing, but the dynamics of an ac-
tivity, that of naming. In to kalòn, therefore, the 
denominative power of intelligence resounds: 
its ability to establish names and, thus, to be 
able to call entities.” This passage, as already 
observed elsewhere,12 offers me the possibility 
of noting that “establishing names” and “being 
able to call entities”, that is, to distinguish them 
from one another, introduces the spontaneous 
breakdown of the symmetry corresponding to 
their indistinguishability existing before each 
is given a name.
Thus we see how general the process of sym-
metry breaking can be. In linguistics, for ex-
ample, we can imagine having a set of letters, 
with symmetry under permutation allowing 
them to be interchanged. Suppose we choose 
four of them for simplicity, e.g. r, m, a, o. The 
symmetry under permutation can be broken by 
choosing to align them, for example, in the or-
der “roma,” which, in Italian, denotes the city 
of Rome. A word corresponding to a different 
order (a different HF, in the notation of the pre-
vious Sections) could be “orma.” Similarly, we 
could get “amor,” “omar,” “ramo,” etc. All dif-
ferent orderings (different phases for our sys-
tem of four letters), different forms originating 
from the reorganization of the symmetry under 
permutations (metamorphosis). In the Italian 
language (environment), each of these words 
is related to other words in a network of cor-
relations over “distances” greater than those 
on which the elementary components live and 
relate. This network of correlations defines 
the meanings: “orma” is the footprint left in 
the sand, “omar” is our friend, etc. Different 
meanings associated with different orderings. 
The meaning of orma therefore does not be-
long to the “r” or “m,” or any of the other com-
ponent letters, but to their specific ordering, it 
is “shared” by them, it is the collective mode 
(coherence) that “wraps” the four letters in 

their correlation and with other words in the 
specific linguistic and cultural context. The re-
sult is the dynamic passage from the level of 
elementary components to that of meanings, 
from syntax to semantics.
In addition to the simple example of letters in 
constructing words, we can consider the next 
level of ordering between words in forming 
sentences, and so on in levels of greater com-
plexity.13

The discussion on SBS, dynamical rearrange-
ment of symmetry (the dynamical process of 
metamorphosis) can be extended to the study 
of the brain functional activity and to biology 
in general. For the sake of brevity, I do not re-
port on it here.14

In conclusion, the mathematical structure of 
QFT shows that the symmetry of the basic in-
teraction dynamics, not accessible to our ob-
servations, manifests itself at the macroscop-
ic level in a multiplicity of ordered patterns 
through metamorphosis processes ruled by 
the coherence paradigm. We could say that in 
QFT the focus is on the study of the metamor-
phosis of the formless uniqueness of being in 
the multiple diversity of the existing. Perhaps 
it is appropriate to conclude with Darwin’s 
words about the generation and evolution of 
forms in living matter:

“There is grandeur in this view of life, with 
its several powers, having been originally 
breathed into a few forms or into one; and 
that, whilst this planet has gone cycling on 
according to the fixed law of gravity, from 
so simple a beginning endless forms most 
beautiful and most wonderful have been, 
and are being, evolved.”15
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Localité et globalité
Jean-Paul Allouche1

Alors que l’emploi des mots « local » et « global » est de plus en plus fréquent, nous nous 
interrogeons sur les raisons explicites ou cachées qui favorisent l’usage de l’un ou l’autre 
de ces concepts.

Quel lien existe-t-il entre les notions de 
localité et de globalité : complémentarité 
ou antonymie ? Le premier champ que nous 
questionnons est celui des mathématiques, où, 
à défaut d’être toujours explicitement définies, 
elles ont souvent un sens précis pour ceux qui 
les utilisent ou les manient. Ce qui semble le 
plus frappant est que le passage en douceur de 
l’un à l’autre de ces deux mots cache souvent 
des théorèmes dont la démonstration est loin 
d’être immédiate, comme le suggèrent peut-
être les trois exemples qui suivent. Le premier 
résultat de ce type est le fait que le corps C est 
algébriquement clos. Que signifie cet énoncé ? 
On apprend au collège ou au lycée qu’un carré 
est toujours positif ou nul, donc, en particulier, 
que -1 n’est pas un carré, autrement dit que 
l’équation polynomiale x2 + 1 = 0 n’a pas de 
racine. Les mathématiciens, qui aiment bien 
transgresser les règles pour en établir de plus 
générales, ont décidé (la réalité historique est 
un peu différente) de « forcer » cette équation 
à avoir une solution, notée « i », et de voir 
où cela pourrait mener. Sans surprise, et en 
tentant de respecter autant que possible les 
règles habituelles malgré l’incongruité d’avoir 
maintenant une racine carrée du nombre -1, 
ils constatent (démontrent) qu’avec le nouveau 
nombre i apparaissent « l’autre » racine carrée 

de -1, a savoir -i, puis tous les nombres de la 
forme a + bi où a et b sont des nombres réels 
(autrement dit les nombres que l’on manipule 
habituellement comme 2, -3/4, √2, etc.). Puis 
ils constatent que les opérations habituelles 
menées sur ces nombres n’en créent pas de 
nouveaux : l’ensemble de ces nombres est 
appelé le corps des nombres complexes (le mot 
corps signifiant que l’on peut mener des calculs 
avec les quatre opérations comme d’habitude, 
sans oublier l’interdiction de diviser par zéro ; 
le mot complexe, lui, n’étant pas là pour 
décourager les Béotiens, mais seulement (?) 
pour signifier qu’il ne s’agit pas des nombres 
ordinaires). En un certain sens, cet ensemble 
de nombres semble conçu pour résoudre un 
problème localisé, à savoir permettre que le 
polynôme x2 + 1 ait une racine (à savoir i). Or 
ceci implique non seulement que ce polynôme 
a maintenant deux racines (i et -i), mais encore 
– et c’est là un résultat superbe appelé parfois 
théorème fondamental de l’algèbre – que tout 
polynôme de degré d à coefficients réels a d 
racines distinctes ou partiellement confondues 
dans le corps C, et même mieux : ceci est vrai 
pour tout polynôme à coefficients complexes 
(on dit donc que C est algébriquement clos). 
Ainsi un modeste ajout (celui de i) qu’on peut 
voir comme la résolution d’une question très 
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localisée entraîne-t-il une propriété globale : 
on obtient ipso facto et sans l’avoir voulu une 
explosion de cette propriété qui s’étend de 
manière globale bien plus loin que la question 
fondatrice. 
Un deuxième exemple est la construction 
des nombres réels (comme √2) à partir des 
nombres rationnels (les quotients de nombres 
entiers). Imaginons qu’on veuille calculer 
un nombre dont le carré vaut 2 (noté √2) 
par approximations successives, soit par un 
algorithme itératif « efficace » fondé sur la 
méthode de Newton, soit par un procédé 
qu’on n’apprend plus guère à l’école (où l’on a 
une « potence » semblable à celle qu’on utilise 
pour la division, etc.). On construit alors des 
approximations rationnelles par défaut et par 
excès de √2, par exemple :

1 < √2 < 2
1,4 < √2 < 1,5

1,41 < √2 < 1,42
1,414 < √2 < 1,415

...

Les encadrements écrits signifient que s’il 
existe un nombre qui a 2 pour carré, il est 
compris entre 1 et 2, puis entre 1,4 et 1,5, 
puis entre 1,41 et 1,42, etc. Ces deux suites 
de rationnels semblent converger vers (se 
rapprocher de plus en plus de) « quelque 
chose » qui n’est pas un nombre rationnel 
(ce qu’on sait depuis les textes d’Aristote). 
Mais vers quoi convergent-elles ? Soucieux 
de précision, les mathématiciens (là encore je 
simplifie la réalité historique) constatent que la 
suite 1  1,4  1,41  1,414... a la propriété que 
ses termes sont tous arbitrairement proches 
les uns des autres dès que leurs indices sont 
suffisamment grands : on peut aussi formuler 
cette propriété en disant que si on se donne 
un intervalle, aussi petit que l’on veut, tous les 
termes de la suite y sont enfermés dès que leurs 
indices sont assez grands. De telles suites sont 
appelées suites de Cauchy. Notons que toute 
suite qui tend vers une limite (par exemple 1  
1,1  1,11  1,111… qui tend vers 10/9, c’est-
à-dire qui s’approche de plus en plus de la 
valeur 10/9) est une suite de Cauchy, mais 
que la réciproque n’est pas vraie, comme le 

montre l’exemple des approximations 1,414... 
ci-dessus. Que faire alors ? Les mathématiciens 
décident que les suites de Cauchy sont de 
nouveaux nombres (à l’identification près de 
deux telles suites lorsque leur différence tend 
vers 0, c’est-à-dire devient aussi proche de 
0 que l’on veut pourvu que l’on prenne des 
indices assez grands) et obtiennent ainsi (après 
démonstration rigoureuse) un ensemble de 
nouveaux nombres, qui contient les rationnels 
et tous les nombres que l’on peut obtenir 
(comme √2) par ce procédé appliqué aux 
nombres rationnels. Et cette résolution d’une 
question somme toute locale, explose, car 
on montre ensuite que les suites de Cauchy 
fabriquées à partir de ces nouveaux nombres 
ne donnent rien de nouveau si on leur applique 
le même procédé. Une sorte de « saturation » 
inattendue a priori permet d’obtenir plus que 
ce qu’on espérait.
Un dernier exemple, avant de clore cette 
partie aux allusions mathématiques, est celui 
des fonctions holomorphes. Une courbe 
continue (la signification intuitive de cette 
notion est qu’on peut tracer la courbe sans 
lever le crayon de la feuille) peut admettre 
des tangentes en certains points (une tangente 
en un point est obtenue en prenant une 
sécante entre ce point et un autre point de 
la courbe et en faisant tendre ce deuxième 
point vers le premier). Lorsque la courbe est 
la représentation d’une fonction, la pente de 
la tangente en un point est la dérivée de la 
fonction en ce point (c’est-à-dire la limite du 
rapport entre l’accroissement de la fonction 
et celui de la variable). Tangente et dérivée 
peuvent ne pas exister (penser aux points 
où une ligne brisée… se brise). Il y a même 
des fonctions longtemps considérées comme 
monstrueuses qui sont continues et nulle part 
dérivables. Le fait pour une fonction d’être 
dérivable en un point est local et ne dépend 
que des propriétés de la fonction au voisinage 
de ce point. Maintenant, si une fonction est 
dérivable sur un voisinage d’un point, on 
peut se demander si la dérivée est elle-même 
dérivable, puis si cette dernière dérivée 
(dérivée seconde) est elle-même dérivable et 
ainsi de suite, ad infinitum. Bien sûr, il n’y a 
aucune raison qu’une dérivée soit dérivable, 


