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Different physical systems share similar state equations and thus, similar solutions. This 
is the case for gravity, electricity, magnetism, and approximately for elasticity and hydro-
dynamics, in all cases because of 3D symmetry rules. Thus, all solutions of these static or 
dynamic problems share the evidence for 1D vortex like singularities. Large samples of such 
materials exhibit vortex networks. All these vortex networks are quite sensitive to sample 
thermal history. The simple case of magnetism enables us to derive a numerical study of this 
magnetic structure. Simple geometric considerations on independent vortices prove that 
vortex thickness keeps them independent and forbids any branching. Experimental com-
parisons with simple physical systems evidence for vortex knots. The next step for larger 
samples consists of knots of vortex knots and so on in a more and more complex structure.

Basic symmetry rules for 3D problems involve 
equivalence between all directions and senses. 
This symmetry also occurs for time sense. So 
basic Maxwell’s equations for electricity and 
magnetism in vacuum read:1

In these famous equations, g is any component 
of the electric field or of the magnetic field. 
From (1) a local static singularity, i.e., a Dirac 
electric or magnetic monopole, induces the 
classical 3D Coulomb field. Therefore, Cou-
lomb electric field is of the same nature as 
the Newton gravitational field with the same 
r-2 law. For static magnetic dipoles or electric 
dipoles, equation (1) generates the dipolar in-
teraction; this complex r-3 law depends also 
upon mutual dipole directions. These simple 
laws are exactly similar to Newton’s law for 
gravitation, here for dipoles, with of course the 
same solutions and similar structures.
The basic equations for elasticity2 and hydro-
dynamics3 share the same symmetry rules, 
but are more complex than equation (1) since 
more phenomenological constants than mass 
or charge only are involved in these interactions. 
Instead of mass, electric charge or magnet-
ic moment, both an elasticity modulus and 
a torsion modulus occur in the equations of 
elasticity and fluid dynamics. So, the basic 
elasticity or hydrodynamic equations are of 

higher order than Coulomb’s and Newton’s 
equations. Anyway, in a first approach, there 
is a strong similarity between all these prob-
lems and their solutions are very similar with 
evidence for similar long ranged interactions. 
This feature explains the abundance of vortex 
of quite different sorts in nature. In magnetism 
for instance this vortex structure is used for 
memory systems, while recently, skyrmions,4 
with a rather similar structure but a different 
origin, i.e., spin orbit coupling, and a smaller 
size, have found new applications. 
These introductory words introduce the goals 
of this paper. A first goal consists in solving the 
magnetic structure of a basic magnetic sample 
where exchange stabilizes magnetism, as it of-
ten occurs experimentally. Dipolar interactions 
of relative intensity d as compared to unit ex-
change are active. Exchange is a local inter-
action, here just between nearest neighbors, 
while dipolar interaction extends over the 
whole sample in such a way that all magnetic 
moments interact together. The competition 
between exchange and dipolar interactions, 
as well as the extended nature of dipolar in-
teraction leads to complexity, i.e., complex 
arrangements of magnetic dipoles, here called 
spins. Therefore, the magnetic structure de-
pends on both the size and shape of the sam-
ple. The other goals of this paper are the ex-
tension of these results to large samples and 
to similar problems such as that of electricity, 
elasticity and so on.
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The basic structure
An extended interaction like the dipolar one 
is cumulative. As a conclusion of this compe-
tition, the optimal magnetic structure remains 
sensitive to the sample size L, a main param-
eter of this problem, as well as it remains sen-
sitive to the sample shape. Finally, with such 
a complex problem, many metastable states 
occur for a given sample, i.e., many different 
configurations remain stable at low tempera-
ture and share quite similar energy levels. 
Therefore, the actual magnetic structure of a 
sample also depends on its history and more 
especially on its thermal history since heating 
enables to erase past configurations in an an-
nealing process at a temperature T that corre-
sponds to a fraction of the exchange energy. 
Such complex problems lead to complex solu-
tions and thus, require the use of numerical 
methods, here Monte-Carlo simulations5 and 
Langevin dynamics simulations,6 in order to 
observe the large number of approximate solu-
tions. Langevin dynamics have the advantage 
of introducing dynamical properties of these 
complex structures with potential applica-
tions. Numerous authors7 use micromagnet-
ic simulation programs such as Mumax with 
similar results. Experimentally different tech-
niques reveal these complex 3D structures 
in nano-magnetic samples. This is the case 
of  Lorentz electron microscopy8 and recently 
X-ray tomography.9

The occurrence of complex vortex structures 
and at a larger scale of a network of imbri-
cated vortices comes from basic numerical 
evidence, in agreement with observation in 
magnetic nanostructures. A main point to un-
derline is the vortex independence that occurs 
since thick vortices remain separate as ob-
served numerically. 
As noticed before, magnetic structures depend 
upon sample shape and size. Thus, there is a 
full “zoology” of such magnetic structures as 
a function of size and shape. Here in this first 
general approach, we consider rather small 
sample sizes. In addition we try to extend our 
results to large 3D samples. For large samples, 
dipolar effects are quite strong. So consider-
ing smaller ones with higher d values enables 
us to approximate large sample structures. 

Similarly, a cubic sample with simple cubic 
crystalline structure sounds to be a good first 
approach of large 3D samples with this basic 
shape. In our numerical simulations, the cubic 
sample size L is 64 for a 64*64*64 cube, with 
a simple cubic structure. A magnetic structure 
means 262144unit vectors. Such a complex 
magnetic structure is very rich. 
 In order to give a realistic view of the mag-
netic configuration, we show in Figure 1 a ba-
sic cut at the level z=9 of the low temperature 
structure found for d=0.1, where the vertical 
component of the magnetic vector is reported 
by colors, while the in-plane components of 
magnetic vectors are shown as in-plane vec-
tors. Several features clearly appear. There are 
4 vortex centers where the magnetic vector 

Fig. 1. View of a cut of a metastable magnetic configuration at z=9, d=0.1 T=0.001

turns clockwise or oppositely. Two close vor-
tices have opposite chirality. Antivortex where 
magnetic vectors share hyperbolic draws oc-
curs at the center as well as on the side cen-
ters. There are also several nearly uniform do-
mains. All vortices and antivortices are rather 
thick, with the same size as that of regular do-
mains which means the existence of an effec-
tive repulsion between such singularities. 
So, the next step of representation consists in 
focusing on singularities only, i.e., on vortices 
and antivortices neglecting other details. Low 
temperature results10 shown in Figure 2 oc-
cur for different d values. These Figures with 
increasing d values correspond to samples 
with increased sizes and so to samples with 
an increasing number of vortex lines. During 
the steps of this expansion, the freedom of vor-
tex lines also increases progressively. Vortex 
curvature and twist appear quite generally in 
these starting vortex networks.

More precisely, according to the work re-
ported in reference 10, for d=0.005, there is 
just a single vortex line as shown in Fig. 2a. 
For d=0.01, there is still a single vortex line, 
which is very mobile, as it must occur close 
to a phase transition. For d=0.02, there are al-
ready 4 vortex lines which are not so mobile. 
For d=0.04, 4 vortex lines are rather stiff and 
for d=0.06, they are quite stiff. For d=0.1 one 
antivortex line appears between the 4 vortex 
lines as seen on Fig. 2b and the global result is 
more isotropic. For d=0.2, the antivortex line 

is rather stiff. For d=0.3, new antivortex lines 
appear. The further studied steps are d=0.4 
shown in Fig. 2c and d=0.5 where the vortex 
network is stiffer. More generally, a lot of suc-
cessive phase transitions provides more and 
more complex networks and higher and high-
er symmetry levels.  Such complex networks 
require also higher computational times.

Generalization to complex vortex networks
We use an experimental approach of vortex 
networks here in order to deal with general 
optimal arrangements of 1D lines. The char-
acteristics of our magnetic vortices are their 
effective thickness that forbids them from any 
branching. The 3 D symmetry of the global ar-
rangement is a requirement. Within the sam-
ple volume, several thick curved and twisted 
lines must appear. In other words, the pseu-
do vortex lines must be quite longer than the 
sample size in order to obtain a realistic vortex 
network. 
All these conditions, symmetry, large length in 
front of the sample size, appear in a washing 
machine at the end of a full washing process, 
when washing together several winter shirts, 
examples of singularity lines. The diameter 
of the washing drum is about .5 m while the 
extended length of winter shirts is more than 
1.5 m. This ensures the required curvature of 
vortex lines. The long motion ensures global 
symmetry. A typical result appears in Figure 3 
with the result of more than ten winter shirts. 
Notice the numerous knots between different 

Fig. 2a. d=0.005 Fig. 2b. d=0.1 Fig. 2c. d=0.4.
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shirtsleeves. Such an everyday easy experi-
ment does not work with summer shirts with 
nearly .5 m length, which are not enough long 
for inducing strong curvatures. 

Quite numerous knots appear between these 
sleeves as seen on Figure 3. Shirts are highly 
intricate. 
This simple experiment confirms the generali-
ty of the recent observations of vortex knots in 
different fields of physics. For instance, vortex 
knots appear in the resolution of Navier-Stokes 
hydrodynamic equations according to a recent 
paper.11 Vortex knots also appear in optics12 

and in acoustics13 according to recent publi-
cations.
From this obvious generality of vortex knots, 
the next research step consists in observing 
vortex knot networks. Since vortex knots share 
a central axis, this next step consists of intro-
ducing a knot of vortex knots, and so on in a 
more and more complex structure. 
One conclusive remark is devoted to com-
parisons with experiments using a washing 
machine. Quite obviously the use of more nu-
merous and longer sleeves will enable us to 
observe these complex vortex knot networks. 
Quite similarly, other experiments at a large 

Figure 3. The intermixing of 10 winter shirts at the end of a washing machine process.

scale must provide similar results in other 
fields
Another conclusion concerns a general struc-
tural stiffness effect. The high level of com-
plexity of these vortex networks leads to a 
strong hardening of these structures. This ex-
plains the general experimental requirement 
of thermal or magnetic bleaching of the sam-
ples with complex singularity network. Such a 
process enables to deal with fresh simple sam-
ples without any memory effect. This remark is 
true in magnetism as well as in elasticity.
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